Global dynamics for a higher order rational difference equation
نویسندگان
چکیده
منابع مشابه
Global Dynamics for a Higher Order Rational Difference Equation
In this paper, some properties of all positive solutions are considered for a higher order rational difference equation, mainly for the existence of eventual prime period two solutions, the existence and asymptotic behavior of nonoscillatory solutions and the global asymptotic stability of its equilibria. Our results show that a positive equilibrium point of this equation is a global attractor ...
متن کاملGlobal Behavior of a Higher-order Rational Difference Equation
We investigate in this paper the global behavior of the following difference equation: xn+1 = (Pk(xn i0 ,xn i1 , . . . ,xn i2k ) + b)/(Qk(xn i0 ,xn i1 , . . . ,xn i2k ) + b), n = 0,1, . . ., under appropriate assumptions, where b [0, ), k 1, i0, i1, . . . , i2k 0,1, . . . with i0 < i1 < < i2k, the initial conditions xi 2k ,xi 2k+1, . . . ,x0 (0, ). We prove that unique equilibrium x = 1 of that...
متن کاملGlobal asymptotic stability of a higher order rational difference equation
In this note, we consider the following rational difference equation: xn+1 = f (xn−r1 , . . . , xn−rk )g(xn−m1 , . . . , xn−ml )+ 1 f (xn−r1 , . . . , xn−rk )+ g(xn−m1 , . . . , xn−ml ) , n= 0,1, . . . , where f ∈ C((0,+∞)k, (0,+∞)) and g ∈ C((0,+∞)l, (0,+∞)) with k, l ∈ {1,2, . . .}, 0 r1 < · · ·< rk and 0 m1 < · · ·<ml , and the initial values are positive real numbers. We give sufficient con...
متن کاملThe Global Attractivity of a Higher Order Rational Difference Equation
This paper studies global asymptotic stability for positive solutions to the equation yn = yn−kyn−lyn−m + yn−k + yn−l + yn−m 1 + yn−kyn−l + yn−kyn−m + yn−lyn−m , n = 0, 1, . . . , with y−m, y−m+1, . . . , y−1 ∈ (0,∞) and 1 ≤ k < l < m. The paper also includes a listing of possible semi-cycle structures for various (k, l, m). The results generalize several others in the recent literature.
متن کاملDynamics and behavior of a higher order rational difference equation
We study the global result, boundedness, and periodicity of solutions of the difference equation xn+1 = a+ bxn−l + cxn−k dxn−l + exn−k , n = 0, 1, . . . , where the parameters a, b, c, d, and e are positive real numbers and the initial conditions x−t, x−t+1, . . . , x−1 and x0 are positive real numbers where t = max{l, k}, l 6= k. c ©2016 All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2013
ISSN: 0035-7596
DOI: 10.1216/rmj-2013-43-4-1261